
  

CS 309: Autonomous Intelligent Robotics
FRI I

Lecture 9: Introduction to ROS

Instructor: Justin Hart

http://justinhart.net/teaching/2018_spring_cs309/



  

A couple of quick notes

● Homework 1: Due tonight
– Any questions?

● Don't forget what you learned in the PDDL lectures
– That homework goes out tonight!

● Reading 1: Due Monday night
– It should be short and fast. Try to enjoy it. I'll bring in 

videos!

– It was featured in a short documentary: 
https://www.youtube.com/watch?v=-iaiRW3URto



  

ROS

● Robot Operating System
● A middleware layer that provides 

communication between robotics software 
packages

● A collection of utilities relevant to robotics



  

ROS – A brief history

● Prior to ROS, basically every robot ran highly 
customized software
– Though many still do.

● A robot may require computer vision software, 
kinematic solvers (motion), navigation software, 
and so forth.
– Before ROS, this meant digging through software 

libraries and piecing it into your robot's custom 
software



  

ROS – A brief history

● In 2006 Willow 
Garage was founded
– Willow Garage was a 

robotics company and 
incubator

– First two projects
● DARPA Urban 

Challenge autonomous 
vehicle race

● Solar-powered boat



  

ROS – A brief history

● Around the same time, 
the STAIR program at 
Stanford had 4 robots
– Wouldn't it be great if 

these all had the same 
basic starter software?

– Again, at the time, 
there was no common 
robotics software 
platform



  

ROS – A brief history

● In 2007, the Stanford AI lab made the first ROS 
release

● In 2008, two concepts were pitched to Willow Garage 
(which was only a couple of miles from Stanford)
– Build a common robotics hardware platform – the Personal 

Robot 1 (PR1)

– Build a common robotics software platform – ROS

● Willow Garage hires a bunch of people, kicks off a 
number of internal projects



  

ROS – A brief history

● By 2010 ROS had 
grown

● Willow Garage offered 
the PR2 for sale
– Price ~$400,000, each

● 11 schools were 
included in a beta 
program and got theirs 
for free



  

ROS – A brief history

● The robot and ROS had been built-up together
– Creating a robotics ecosystem with the PR2 and ROS at the 

center of it

● The schools had to open source software developed on 
the PR2
– Which resulted in a large collection of ROS software

● ROS became the closest thing to a “starter kit” for 
robotics that has ever existed
– The result is that ROS became the dominant technology in 

robotics both in academia and commercially



  

ROS – A quick overview

● Communications
– ROS Topics

● Publish/Subscribe
● A “node” (a ROS program) may “publish” a topic

– For instance, a node connected to a sensor may publish 3D 
point cloud data

● A node “subscribe” to a topic in order to use that data
● Many nodes may concurrently subscribe to topics



  

ROS – A quick overview

● Communications
– ROS Services

● Remote Procedure Call
– Allows one ROS node to offer a function and another ROS node to 

call that function
– As such, functions can reside in entirely different computer 

programs and still be called
– This is useful if one program should exclusively handle some type 

of request, or can be packaged to handle such a request
● “Tell me how fast the robot is moving”
● “Use PDDL to compute a plan for me”
● “Change the robot's navigation goal”



  

ROS – A quick overview

● Communications
– ROS actionlib

● RPC + Feedback
– Use in the same places you would a ROS service, but the 

service can provide feedback
● “Use the arm to pick up that object.”

● Feedback tells you progress towards that goal
● “Navigate to this location.”
● “Say the following..”



  

ROS – A quick overview

● Simulation – Gazebo
– 3D robot simulation

– Works with most ROS software
● Publishes ROS topics
● Services ROS actionlib and service calls

– Users can download models of real robots or build 
them themselves

– Users can download or build models of real places

– We have the 3rd floor of GDC in Gazebo



  

ROS – A quick overview

● Simulation – Gazebo
– Watch video



  

ROS – A quick overview

● Visualization – rviz
– ROS visualizer

– Visualizes many kinds of data
● TF (transform) frames

– Locations and directions (poses)
● URDF – Universal robot definition file

– 3D robot model data
● Point Cloud

– 3D vision data
● Camera Images
● Mapping Data
● Markup
● Many others



  

ROS – A quick overview

● Visualization – rviz
– Watch video



  

ROS – A quick overview

● Then, there is a large software collection that does basic 
tasks, these can be joined in “stacks” of programs, and 
nodes can interface to these stacks

● Packages include
– Perception

● Finding known objects, planes, shapes

– Navigation
● Most robots can drive themselves out of the box

– More complicated packages and stacks that build complex 
features

● MoveIt



  

ROS – A quick overview

● MoveIt
– Provides a pipeline for complex motion planning, such 

as robot arms grasping and manipulating objects

– Pipeline parts include
● Perceptual data input
● Models of the robot so the system knows how to move
● An assortment of motion planners
● Methods to customize all of these pieces
● Simulation and visualization



  

ROS – A quick overview

● MoveIt
– Watch video



  

Installing ROS

● Ubuntu 16.04 – You should already have this
● ROS installation instructions can be found here:

– Follow these only if you are installing on your personal machine

– http://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment

– You need to pick “Kinetic Kame”
● Ubuntu

– Amd64

– Set up sources.list
● sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" > 

/etc/apt/sources.list.d/ros-latest.list'

– Add keys identifying this as a trusted source
● sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --recv-key 

421C365BD9FF1F717815A3895523BAEEB01FA116

– sudo apt-get update

– sudo apt-get install ros-kinetic-desktop-full 

http://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment


  

Installing ROS

● If you miss a package, you will know it because the 
machine will tell you
– It will also tell you how to install it

– If it doesn't, Google will almost always be able to tell you

– Also, we'll help you get your machine configured

● If you are using a lab machine, Kinetic is already installed
– Both the undergraduate lab, and the BWI Lab

● In general, if it involves sudo, you can't do it on a lab 
machine, and probably don't need to



  

Installing ROS

● Setting up rosdep
– sudo rosdep init

– rosdep update

● rosdep is used to set up dependencies
– For instance, your package may require another 

package. This will help automatically set that up



  

Configuring your environment

● http://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnviro
nment

● You can manually configure your environment, but probably will not 
want to keep doing this
– source /opt/ros/<distro>/setup.bash

● Where distro is kinetic

● Configuring your environment sets up “environment variables”
– $PATH

● Where programs can be found

– $ROS_PACKAGE_PATH
● Where ROS packages, containing packaged stacks and programs can be found

– Others



  

Creating a ROS Workspace

● mkdir -p ~/catkin_ws/src
● cd ~/catkin_ws/src
● catkin_init_workspace

– This is different from the guide, both work

● catkin build



  

Navigating ROS

● http://wiki.ros.org/ROS/Tutorials/NavigatingThe
Filesystem

● We'll just follow the tutorial here

http://wiki.ros.org/ROS/Tutorials/NavigatingTheFilesystem
http://wiki.ros.org/ROS/Tutorials/NavigatingTheFilesystem


  

Navigating ROS

● http://wiki.ros.org/ROS/Tutorials/NavigatingThe
Filesystem

● We'll just follow the tutorial here

http://wiki.ros.org/ROS/Tutorials/NavigatingTheFilesystem
http://wiki.ros.org/ROS/Tutorials/NavigatingTheFilesystem


  

Cmake – A brief sidebar

● For our first homework assignment, we are 
using make, which simplifies building software

● Cmake, or cross-platform make is intended to 
simplify creating Makefiles

● Makefiles, in large software systems, cross-
reference many dependencies. Cmake is 
intended to help manage this



  

Cmake and package.xml

● ROS packages require two files with similar 
contents
– Cmake tells the system how to build your software

– package.xml is a “manifest”
● It tells ROS things like the name of the package, runtime 

dependencies, and build dependencies

● We will walk through both now



  

Building your package

● cd ~/catkin_workspace
● catkin_make
● Source devel/setup.bash

– This puts your catkin worskspace into your 
ROS_PACKAGE_PATH



  

That was a lot of talking

● Are there any questions before we push 
ahead?



  

A quick primer on ROS Nodes

● http://wiki.ros.org/ROS/Tutorials/Understandin
gNodes

● The basic idea here is to show that you run
– roscore

● Which manages communications

– turtlesim_node
● Which connects to roscore in order to communicate

http://wiki.ros.org/ROS/Tutorials/UnderstandingNodes
http://wiki.ros.org/ROS/Tutorials/UnderstandingNodes


  

Understanding ROS Topics

● http://wiki.ros.org/ROS/Tutorials/UnderstandingTopics
● ROS Topics run on a publish/subscribe architecture

– A “publisher” provides a stream of data

– A “subscriber” listens to this stream

● The first demo shows
– turtlesim_node, which is a subscriber

– turtlesim_teleop_key, which is a publisher

● If alongside this we run rostopic echo, we can see the 
keys telling the turtle what to do
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