

CS 309: Autonomous Intelligent Robotics
FRI I

Lecture 9: Introduction to ROS

Instructor: Justin Hart

http://justinhart.net/teaching/2018_spring_cs309/

A couple of quick notes

● Homework 1: Due tonight
– Any questions?

● Don't forget what you learned in the PDDL lectures
– That homework goes out tonight!

● Reading 1: Due Monday night
– It should be short and fast. Try to enjoy it. I'll bring in

videos!

– It was featured in a short documentary:
https://www.youtube.com/watch?v=-iaiRW3URto

ROS

● Robot Operating System
● A middleware layer that provides

communication between robotics software
packages

● A collection of utilities relevant to robotics

ROS – A brief history

● Prior to ROS, basically every robot ran highly
customized software
– Though many still do.

● A robot may require computer vision software,
kinematic solvers (motion), navigation software,
and so forth.
– Before ROS, this meant digging through software

libraries and piecing it into your robot's custom
software

ROS – A brief history

● In 2006 Willow
Garage was founded
– Willow Garage was a

robotics company and
incubator

– First two projects
● DARPA Urban

Challenge autonomous
vehicle race

● Solar-powered boat

ROS – A brief history

● Around the same time,
the STAIR program at
Stanford had 4 robots
– Wouldn't it be great if

these all had the same
basic starter software?

– Again, at the time,
there was no common
robotics software
platform

ROS – A brief history

● In 2007, the Stanford AI lab made the first ROS
release

● In 2008, two concepts were pitched to Willow Garage
(which was only a couple of miles from Stanford)
– Build a common robotics hardware platform – the Personal

Robot 1 (PR1)

– Build a common robotics software platform – ROS

● Willow Garage hires a bunch of people, kicks off a
number of internal projects

ROS – A brief history

● By 2010 ROS had
grown

● Willow Garage offered
the PR2 for sale
– Price ~$400,000, each

● 11 schools were
included in a beta
program and got theirs
for free

ROS – A brief history

● The robot and ROS had been built-up together
– Creating a robotics ecosystem with the PR2 and ROS at the

center of it

● The schools had to open source software developed on
the PR2
– Which resulted in a large collection of ROS software

● ROS became the closest thing to a “starter kit” for
robotics that has ever existed
– The result is that ROS became the dominant technology in

robotics both in academia and commercially

ROS – A quick overview

● Communications
– ROS Topics

● Publish/Subscribe
● A “node” (a ROS program) may “publish” a topic

– For instance, a node connected to a sensor may publish 3D
point cloud data

● A node “subscribe” to a topic in order to use that data
● Many nodes may concurrently subscribe to topics

ROS – A quick overview

● Communications
– ROS Services

● Remote Procedure Call
– Allows one ROS node to offer a function and another ROS node to

call that function
– As such, functions can reside in entirely different computer

programs and still be called
– This is useful if one program should exclusively handle some type

of request, or can be packaged to handle such a request
● “Tell me how fast the robot is moving”
● “Use PDDL to compute a plan for me”
● “Change the robot's navigation goal”

ROS – A quick overview

● Communications
– ROS actionlib

● RPC + Feedback
– Use in the same places you would a ROS service, but the

service can provide feedback
● “Use the arm to pick up that object.”

● Feedback tells you progress towards that goal
● “Navigate to this location.”
● “Say the following..”

ROS – A quick overview

● Simulation – Gazebo
– 3D robot simulation

– Works with most ROS software
● Publishes ROS topics
● Services ROS actionlib and service calls

– Users can download models of real robots or build
them themselves

– Users can download or build models of real places

– We have the 3rd floor of GDC in Gazebo

ROS – A quick overview

● Simulation – Gazebo
– Watch video

ROS – A quick overview

● Visualization – rviz
– ROS visualizer

– Visualizes many kinds of data
● TF (transform) frames

– Locations and directions (poses)
● URDF – Universal robot definition file

– 3D robot model data
● Point Cloud

– 3D vision data
● Camera Images
● Mapping Data
● Markup
● Many others

ROS – A quick overview

● Visualization – rviz
– Watch video

ROS – A quick overview

● Then, there is a large software collection that does basic
tasks, these can be joined in “stacks” of programs, and
nodes can interface to these stacks

● Packages include
– Perception

● Finding known objects, planes, shapes

– Navigation
● Most robots can drive themselves out of the box

– More complicated packages and stacks that build complex
features

● MoveIt

ROS – A quick overview

● MoveIt
– Provides a pipeline for complex motion planning, such

as robot arms grasping and manipulating objects

– Pipeline parts include
● Perceptual data input
● Models of the robot so the system knows how to move
● An assortment of motion planners
● Methods to customize all of these pieces
● Simulation and visualization

ROS – A quick overview

● MoveIt
– Watch video

Installing ROS

● Ubuntu 16.04 – You should already have this
● ROS installation instructions can be found here:

– Follow these only if you are installing on your personal machine

– http://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment

– You need to pick “Kinetic Kame”
● Ubuntu

– Amd64

– Set up sources.list
● sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" >

/etc/apt/sources.list.d/ros-latest.list'

– Add keys identifying this as a trusted source
● sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --recv-key

421C365BD9FF1F717815A3895523BAEEB01FA116

– sudo apt-get update

– sudo apt-get install ros-kinetic-desktop-full

http://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment

Installing ROS

● If you miss a package, you will know it because the
machine will tell you
– It will also tell you how to install it

– If it doesn't, Google will almost always be able to tell you

– Also, we'll help you get your machine configured

● If you are using a lab machine, Kinetic is already installed
– Both the undergraduate lab, and the BWI Lab

● In general, if it involves sudo, you can't do it on a lab
machine, and probably don't need to

Installing ROS

● Setting up rosdep
– sudo rosdep init

– rosdep update

● rosdep is used to set up dependencies
– For instance, your package may require another

package. This will help automatically set that up

Configuring your environment

● http://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnviro
nment

● You can manually configure your environment, but probably will not
want to keep doing this
– source /opt/ros/<distro>/setup.bash

● Where distro is kinetic

● Configuring your environment sets up “environment variables”
– $PATH

● Where programs can be found

– $ROS_PACKAGE_PATH
● Where ROS packages, containing packaged stacks and programs can be found

– Others

Creating a ROS Workspace

● mkdir -p ~/catkin_ws/src
● cd ~/catkin_ws/src
● catkin_init_workspace

– This is different from the guide, both work

● catkin build

Navigating ROS

● http://wiki.ros.org/ROS/Tutorials/NavigatingThe
Filesystem

● We'll just follow the tutorial here

http://wiki.ros.org/ROS/Tutorials/NavigatingTheFilesystem
http://wiki.ros.org/ROS/Tutorials/NavigatingTheFilesystem

Navigating ROS

● http://wiki.ros.org/ROS/Tutorials/NavigatingThe
Filesystem

● We'll just follow the tutorial here

http://wiki.ros.org/ROS/Tutorials/NavigatingTheFilesystem
http://wiki.ros.org/ROS/Tutorials/NavigatingTheFilesystem

Cmake – A brief sidebar

● For our first homework assignment, we are
using make, which simplifies building software

● Cmake, or cross-platform make is intended to
simplify creating Makefiles

● Makefiles, in large software systems, cross-
reference many dependencies. Cmake is
intended to help manage this

Cmake and package.xml

● ROS packages require two files with similar
contents
– Cmake tells the system how to build your software

– package.xml is a “manifest”
● It tells ROS things like the name of the package, runtime

dependencies, and build dependencies

● We will walk through both now

Building your package

● cd ~/catkin_workspace
● catkin_make
● Source devel/setup.bash

– This puts your catkin worskspace into your
ROS_PACKAGE_PATH

That was a lot of talking

● Are there any questions before we push
ahead?

A quick primer on ROS Nodes

● http://wiki.ros.org/ROS/Tutorials/Understandin
gNodes

● The basic idea here is to show that you run
– roscore

● Which manages communications

– turtlesim_node
● Which connects to roscore in order to communicate

http://wiki.ros.org/ROS/Tutorials/UnderstandingNodes
http://wiki.ros.org/ROS/Tutorials/UnderstandingNodes

Understanding ROS Topics

● http://wiki.ros.org/ROS/Tutorials/UnderstandingTopics
● ROS Topics run on a publish/subscribe architecture

– A “publisher” provides a stream of data

– A “subscriber” listens to this stream

● The first demo shows
– turtlesim_node, which is a subscriber

– turtlesim_teleop_key, which is a publisher

● If alongside this we run rostopic echo, we can see the
keys telling the turtle what to do

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

