
  

CS 309: Autonomous Intelligent Robotics
FRI I

Lecture 7: AI as Search and PDDL

Instructor: Justin Hart

http://justinhart.net/teaching/2018_spring_cs309/



  

A couple of quick notes

● You should be able to use the lab machines in 
the 3rd floor computing lab in GDC to do your 
homework.

● Mentors are available for your help in GDC 
3.414

● I have updated the assignment and the header 
file to be more clear, and to fix some compile 
errors students reported



  

● Imagine a computer 
trying to solve a maze

● There are many 
options for how to 
solve this maze

● A search algorithm will 
test each action an 
agent can take until it 
finds a solution

AI as search



  

● There are two basic 
types of solutions
– Satisficing solutions

● Work, but are not 
known to be optimal

– Optimal solutions
● Are intended to be 

optimal

AI as search



  

● The agent is the orange 
dot, trying to get to the 
green dot.

● Possible moves are up, 
down, left, right.

● Here, left and right are not 
possible, so when the 
search algorithm attempts 
them, they fail.

● Up and down work.

AI as search



  

● Breadth-first search
● Depth-first search
● A*

Three basic search patterns



  

● Expand search nodes
– Up - Works

– Down - Works

– Left – Fails

– Right – Fails

● Enter these into the 
“ready queue”

Breadth-first search
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● Continue until you 
have a solution

Breadth-first search
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● Now try the ones in 
the ready queue in 
First In First Out 
(FIFO) order

Breadth-first search
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● Continue until you 
have a solution

Breadth-first search
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● Breadth-first search is 
“complete” in that in 
will eventually explore 
the entire space

● It is “optimal” in that 
the first solution found 
takes the fewest 
steps

Breadth-first search
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● Depth-first search 
tries to explore one 
path completely 
before moving on

● May faster than 
breadth-first, but may 
miss solutions if it 
takes the first found.

Depth-first search
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● Uses a First In Last 
Out (FILO) pattern

Depth-first search
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● Uses a First In Last 
Out (FILO) pattern

Depth-first search
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● The queue becomes 
a priority queue, with 
those nodes assumed 
to have the lowest 
cost going to the front

A* search
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● Planning algorithms 
have come a long 
way but still integrate 
these basic ideas

● The development of 
these algorithms is 
often its own class

Modern planning



  

● The planning 
equivalent of “Hello 
World” is “Blocks 
World”

● Blocks arranged on a 
table with a robot 
gripper

Blocks world
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● Atoms represent the 
things we can talk 
about in the world
– block_a, block_b, 

block_c

– table_a

– gripper_a

Atoms
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● Predicates modify and 
describe atoms

– on_table(block_a),
on_table(block_c)

– stacked(block_b, block_a)

– clear(block_b),
clear(block_c)

– gripper_empty(gripper_a)

Predicates
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BB
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TableTable

GripperGripper



  

● Traditionally, predicates are used like types

– block(block_a), block(block_b)..

● PDDL has types and type-checking

– (:types
block_a, block_b, block_c – block
gripper_a – gripper
table_a - table)

Predicates
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TableTable

GripperGripper



  

● The predicates used in 
the previous slide 
describe the state of the 
world.
– on_table(block_a),

on_table(block_c)

– stacked(block_b, block_a)

– clear(block_b),
clear(block_c)

– gripper_empty(gripper_a)

World states
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TableTable

GripperGripper



  

● A different world state 
would use different 
predicates
– on_table(block_a),

on_table(block_c)

– stacked(block_b, 
block_c)

– clear(block_b),
clear(block_a)

– gripper_empty(gripper)

World states

BB

CCAA

TableTable

GripperGripper



  

● Start state
– The current state of 

the world, or the 
starting state of your 
plan

● Goal state
– The state that you 

wish to reach

Start states and end states
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GripperGripper



  

Start states and goal states

stacked(block_b, block_c)

– While your start state must be 
complete, generally your goal state 
can state only those predicates 
that you require to be true

– on_table(block_a),
on_table(block_c)

– stacked(block_b, block_c)

– clear(block_b),
clear(block_a)

– gripper_empty(gripper)

BB

CCAA

TableTable

GripperGripper
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● Actions permute 
world state

● Actions have
– A name

– Parameters

– Preconditions

– Effects

Actions
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(:action grasp-block
:parameters (?g – gripper ?b – block)
:precondition (and (empty ?g) (clear ?b))
:effect (and

(not (empty ?g)) 
(not (clear ?b)) 
(in_gripper ?b ?g)
)

) 

Actions

CC

BB

AA

TableTable

GripperGripper



  

● Think back to the maze
● Preconditions tell us what must be true 

for us to be able to take an action
● Effects tell us how the action changes 

the world
● Our ready queue is filled with possible 

permutations based on the effects of 
actions whose preconditions are satisfied
– Can't go left

– Can't go right

– Can go up → resulting in the agent being 1 
square up

– Can go down → resulting in the agent being 
1 square down

Actions



  

● Can't grasp-block(gripper_a, block_a)

– So this action isn't taken

● Can grasp-block(gripper_a, block_b)

– Goes into ready queue

● Can grasp-block(gripper_a, block_c)

– Goes into ready queue

Actions
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TableTable

GripperGripper



  

Plans

grasp-block(gripper_a, 
block_b)

unstack-block(gripper_a, 
block_b, block_a)

stack-block(gripper_a, 
block_b, block_c)

A plan takes the world from a 
start state to a goal state

BB

CCAA

TableTable

GripperGripper
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