

CS 309: Autonomous Intelligent Robotics
FRI I

Lecture 7: AI as Search and PDDL

Instructor: Justin Hart

http://justinhart.net/teaching/2018_spring_cs309/

A couple of quick notes

● You should be able to use the lab machines in
the 3rd floor computing lab in GDC to do your
homework.

● Mentors are available for your help in GDC
3.414

● I have updated the assignment and the header
file to be more clear, and to fix some compile
errors students reported

● Imagine a computer
trying to solve a maze

● There are many
options for how to
solve this maze

● A search algorithm will
test each action an
agent can take until it
finds a solution

AI as search

● There are two basic
types of solutions
– Satisficing solutions

● Work, but are not
known to be optimal

– Optimal solutions
● Are intended to be

optimal

AI as search

● The agent is the orange
dot, trying to get to the
green dot.

● Possible moves are up,
down, left, right.

● Here, left and right are not
possible, so when the
search algorithm attempts
them, they fail.

● Up and down work.

AI as search

● Breadth-first search
● Depth-first search
● A*

Three basic search patterns

● Expand search nodes
– Up - Works

– Down - Works

– Left – Fails

– Right – Fails

● Enter these into the
“ready queue”

Breadth-first search

11

22

11 22

● Continue until you
have a solution

Breadth-first search

33 55 77
11 1010

1313
22 1616
44
66 88 1111
99 1414 1717

1212
1515 1818

11 22 33 44

● Now try the ones in
the ready queue in
First In First Out
(FIFO) order

Breadth-first search

33
11

22

11 22 33 44

● Continue until you
have a solution

Breadth-first search

33 55 77
11 1010

1313
22 1616
44
66 88 1111
99 1414 1717

1212
1515 1818

11 22 33 44 55 66

● Breadth-first search is
“complete” in that in
will eventually explore
the entire space

● It is “optimal” in that
the first solution found
takes the fewest
steps

Breadth-first search

33 55 77
11 1010

1313
22 1616
44
66 88 1111
99 1414 1717

1212
1515 1818

11 22 33 44

● Depth-first search
tries to explore one
path completely
before moving on

● May faster than
breadth-first, but may
miss solutions if it
takes the first found.

Depth-first search

11

22

11 22

● Uses a First In Last
Out (FILO) pattern

Depth-first search

11

22
33

11
22

33

● Uses a First In Last
Out (FILO) pattern

Depth-first search

11

22
33
44 55
66
77
88 99 1010

11
22

33

● The queue becomes
a priority queue, with
those nodes assumed
to have the lowest
cost going to the front

A* search

33 44 55
11 66

77
22 88 2020
99 1919

1010 1111 1212 1818
1313 1414 1515 1717
1616

11 2211 22

● Planning algorithms
have come a long
way but still integrate
these basic ideas

● The development of
these algorithms is
often its own class

Modern planning

● The planning
equivalent of “Hello
World” is “Blocks
World”

● Blocks arranged on a
table with a robot
gripper

Blocks world

CC

BB

AA

TableTable

GripperGripper

● Atoms represent the
things we can talk
about in the world
– block_a, block_b,

block_c

– table_a

– gripper_a

Atoms

CC

BB

AA

TableTable

GripperGripper

● Predicates modify and
describe atoms

– on_table(block_a),
on_table(block_c)

– stacked(block_b, block_a)

– clear(block_b),
clear(block_c)

– gripper_empty(gripper_a)

Predicates

CC

BB

AA

TableTable

GripperGripper

● Traditionally, predicates are used like types

– block(block_a), block(block_b)..

● PDDL has types and type-checking

– (:types
block_a, block_b, block_c – block
gripper_a – gripper
table_a - table)

Predicates

CC

BB

AA

TableTable

GripperGripper

● The predicates used in
the previous slide
describe the state of the
world.
– on_table(block_a),

on_table(block_c)

– stacked(block_b, block_a)

– clear(block_b),
clear(block_c)

– gripper_empty(gripper_a)

World states

CC

BB

AA

TableTable

GripperGripper

● A different world state
would use different
predicates
– on_table(block_a),

on_table(block_c)

– stacked(block_b,
block_c)

– clear(block_b),
clear(block_a)

– gripper_empty(gripper)

World states

BB

CCAA

TableTable

GripperGripper

● Start state
– The current state of

the world, or the
starting state of your
plan

● Goal state
– The state that you

wish to reach

Start states and end states

BB

CCAA

TableTable

GripperGripper

Start states and goal states

stacked(block_b, block_c)

– While your start state must be
complete, generally your goal state
can state only those predicates
that you require to be true

– on_table(block_a),
on_table(block_c)

– stacked(block_b, block_c)

– clear(block_b),
clear(block_a)

– gripper_empty(gripper)

BB

CCAA

TableTable

GripperGripper

CC

BB

AA

TableTable

GripperGripper

● Actions permute
world state

● Actions have
– A name

– Parameters

– Preconditions

– Effects

Actions

CC

BB

AA

TableTable

GripperGripper

(:action grasp-block
:parameters (?g – gripper ?b – block)
:precondition (and (empty ?g) (clear ?b))
:effect (and

(not (empty ?g))
(not (clear ?b))
(in_gripper ?b ?g)
)

)

Actions

CC

BB

AA

TableTable

GripperGripper

● Think back to the maze
● Preconditions tell us what must be true

for us to be able to take an action
● Effects tell us how the action changes

the world
● Our ready queue is filled with possible

permutations based on the effects of
actions whose preconditions are satisfied
– Can't go left

– Can't go right

– Can go up → resulting in the agent being 1
square up

– Can go down → resulting in the agent being
1 square down

Actions

● Can't grasp-block(gripper_a, block_a)

– So this action isn't taken

● Can grasp-block(gripper_a, block_b)

– Goes into ready queue

● Can grasp-block(gripper_a, block_c)

– Goes into ready queue

Actions

CC

BB

AA

TableTable

GripperGripper

Plans

grasp-block(gripper_a,
block_b)

unstack-block(gripper_a,
block_b, block_a)

stack-block(gripper_a,
block_b, block_c)

A plan takes the world from a
start state to a goal state

BB

CCAA

TableTable

GripperGripper

CC

BB

AA

TableTable

GripperGripper

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

