

CS 309: Autonomous Intelligent Robotics
FRI I

Lecture 14:
OpenCV

Rviz

http://justinhart.net/teaching/2019_spring_cs309/

Basic computer vision ideas in
OpenCV
● The basics

– Color channels
– Color channel subtraction
– Thresholding

– Contour Detection

– Masking

● These are some of the most basic tools in
computer vision, but will enable you to do some
simple object detection and tracking.

OpenCV and ROS use different
formats
● cv_bridge helps solve this

Color Channels

● Color images can be represented under several
different systems.
– BGR → Blue, Green, Red

– HSV → Hue, Saturation, Value

– Others get a bit more complex

– Today, we focus on BGR

BGR

● In BGR, each pixel
gets a color intensity
for each channel

● The blend of the
colors blue, green,
and red becomes the
final color
represented

OpenCV and BGR

● In OpenCV, images are stored in a matrix type
– cv::Mat

● A matrix has rows and columns
– For an image, this is how tall and how wide the image is

● In OpenCV, each cell of the matrix can have more than
one channel, and the matrix takes on a type that
represents this

● BGR images are stored in CV_8UC3
– OpenCV, 8 bits per channel, unsigned character, 3 channels

Color Values

● An unsigned character is 8 bits long
– 0..255

– So the highest intensity is 255, the lowest is 0

– As the intensity gets higher, the color in that channel gets brighter

● cv::split()
– Allows us to break an image with several channels into several 1

channel images

std::vector<cv::Mat> chans;
split(image, chans);

Input image, as 3 channels

Color Channel Images

● As the intensity goes up, the channel’s
greyscale image becomes brighter

● We can use this for a technique called color
blob detection

● In this example, we will find the blue cup by
finding the bluest pixels

Color Channel Subtraction

● cv::subtract()
– Allows you to subtract one cv::Mat from another

– cv::Mat bMinusG;

– cv::subtract(chans[0], chans[1], bMinusG);

Color Subtracted Images

● Blue channel minus
red channel

● Blue channel minus
green channel

Picking out the blue pixels

● We see that Blue minus Red gives us really
bright pixels where the blue cup is, so we’ll
simply focus on that

Image Thresholding

● There are other illuminated pixels in the image, but the brightest
ones are now the cup.
– So we will pick the pixels that are only at least as bright as some value

● This is image thresholding
– You can specify both a minimum and a maximum threshold

– cv::threshold(input_image, output_image, threshold_value,
value_when_above_threshold, threshold_type)

– For now, we will use only cv::THRESH_BINARY
● It is or is not above the threshold

cv::Mat bThresh;
cv::threshold(bMinusR, bThresh, 50, 255, cv::THRESH_BINARY);

Contour Detection

● Looks for closed image contours in a scene
– These are the “blobs” in the image, connected

areas in the threshold image.

– This is more obvious in the next set of images

Area in a contour

● cv::contourArea(contours[i])
– Looks for the size of a contour

– In your program, look for the biggest contour and
track it, to get rid of noise

– In this example, it looks like this

Image Masking

● Masking is using only certain pixels
● A mask is computed as a 1-channel image
● In the example, this happens here

cv::Mat mask = cv::Mat::zeros(image.rows, image.cols, CV_8UC1);
drawContours(mask, contours, maxSizeContour, cv::Scalar(255),
cv::LineTypes::FILLED, 8, hierarchy);

● copyTo can be used with a mask like this
image.copyTo(blueCupImg, mask);

For your homework..

● You will create your own ROS package which puts the
blue, green, and red cups together
– This package must build under catkin_make or catkin build

with g++

● The three separate cups get published on ROS topics
● The three cups together get published on a ROS topic

in a composite image
● This will stream using data from three_cups.bag
● Publishing the image topics will use cv_bridge

ROS Workspace Creation Review

● mkdir <ros_workspace_name>
● cd <ros_workspace_name>
● mkdir src
● cd src
● catkin_init_workspace

ROS Package Creation Review

● We went over this before, so we’ll only hit the
high points

catkin_create_pkg

● Creates a package template that you can fill in
– catkin_create_pkg <package_name> roscpp rospy

std_msgs <other dependencies if you need them>

● In your homework, you will use
– catkin_create_pkg hw3 roscpp rospy std_msgs

sensor_msgs cv_bridge image_transport
– Consider this a free tip on how to solve your homework

● Should be run from your workspace’s src directory

CMakeLists.txt

● Used to build your software
– We can pick through this file if needed

● The version created by catkin_create_pkg is only a
template, you will need to uncomment and modify the lines
that you need
– # add_executable(${PROJECT_NAME}_node src/hw3_node.cpp)

– # target_link_libraries(${PROJECT_NAME}_node
${catkin_LIBRARIES}
)

– Possibly others

package.xml

● The version made by catkin_create_pkg is
probably actually correct. Your implementation
may vary

● package.xml is your manifest file
– It tells ROS how to treat your package

● Name
● License
● Maintainer
● If it requires other packages in order to build or run it

“catkin_make” and “catkin build”

● Either is run from the top of your workspace
● Will build your software into your ROS workspace
● You will need to source devel/setup.bash to include

your workspace into your ROS environment
● Once you have done that, you should be able to run

your homework from rosrun hw3 <program_name>
● Remember to run roscore before any program that

is not in a launch file, including rviz or rosbag

rosbag

● You will use three_cups.bag for your homework
● rosbag records of plays back pre-recorded data

from ROS topics
● rosbag play -l three_cups.bag

– -l makes it run the bag in a loop

rviz – The ROS Visualizer

● rosrun rviz rviz
● What you get should look something like this.

● Clicking the add button will allow you to add
things to visualize.

● “By topic” will list the available topics.

● Expand until you see what you are interested
in.

● Clicking “Okay” should add it to the interface.

● You can rearrange and resize windows as
appropriate.

● Use rviz to help develop and debug your
homework.

What should my program do?

● You should write 1 (and only 1) ROS node
● It should publish 4 topics

– /color_filter/blue_cup

– /color_filter/green_cup

– /color_filter/red_cup

– /color_filter/cups

● The first three should show only the blue, green, and
red cup, respectively.

● The third should show all three together.

How should my program do this?

● Finding the BLUE cup is demonstrated in the
example on justinhart.net
– You may need to modify your package.xml and

CMakelists.txt as per the Piazza discussion

● Finding the RED and GREEN cups is a
variation on this

How should my program do this?

● /color_filter/cups contains all three, though!
● RIGHT! I’m not going to tell you exactly how to

do this, because it would make the homework
too easy for you to learn anything.

● But you will use cv::bitwise_or to do it
– And if you Google cv::bitwise_or, and understand

how you found the blue,green, and red cups; the
example for bitwise_or is almost exact directions on
how this works.

So.. display the cups, right?

● NO!!
– Publish a ROS TOPIC for each of the the blue,

green, and red cups, respectively, and one
containing all three.

– You should be able to see this topic using rviz

– In fact, turn off the cv::imshows in your c++ code
before you submit (unless you’ve already
submitted).

How do I publish the ROS topic?

● cv_bridge
– http://wiki.ros.org/cv_bridge/Tutorials/UsingCvBridg

eToConvertBetweenROSImagesAndOpenCVImage
s

– Then publish the topic as in our previous lectures.

– See also:
https://stackoverflow.com/questions/27080085/how-
to-convert-a-cvmat-into-a-sensor-msgs-in-ros

My ROS topic complains that I’ve
advertised more than once
● Call advertise() in your main, and publish() in

your callback.
– publish() sends the image

– advertise() says that you will publish on a topic

My ROS topic complains that I’ve
advertised more than once
● Call advertise() in your main, and publish() in

your callback.
– publish() sends the image

– advertise() says that you will publish on a topic
● And you can’t advertise the same topic more than once

per node.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

