
  

CS 309: Autonomous Intelligent Robotics
FRI I

Lecture 14:
OpenCV

Rviz

http://justinhart.net/teaching/2019_spring_cs309/



  

Basic computer vision ideas in 
OpenCV
● The basics

– Color channels
– Color channel subtraction
– Thresholding

– Contour Detection

– Masking

● These are some of the most basic tools in 
computer vision, but will enable you to do some 
simple object detection and tracking.



  

OpenCV and ROS use different 
formats
● cv_bridge helps solve this



  

Color Channels

● Color images can be represented under several 
different systems.
– BGR → Blue, Green, Red

– HSV → Hue, Saturation, Value

– Others get a bit more complex

– Today, we focus on BGR 



  

BGR

● In BGR, each pixel 
gets a color intensity 
for each channel

● The blend of the 
colors blue, green, 
and red becomes the 
final color 
represented



  

OpenCV and BGR

● In OpenCV, images are stored in a matrix type
– cv::Mat

● A matrix has rows and columns
– For an image, this is how tall and how wide the image is

● In OpenCV, each cell of the matrix can have more than 
one channel, and the matrix takes on a type that 
represents this

● BGR images are stored in CV_8UC3
– OpenCV, 8 bits per channel, unsigned character, 3 channels



  

Color Values

● An unsigned character is 8 bits long
– 0..255

– So the highest intensity is 255, the lowest is 0

– As the intensity gets higher, the color in that channel gets brighter

● cv::split()
– Allows us to break an image with several channels into several 1 

channel images

std::vector<cv::Mat> chans;
split(image, chans);



  

Input image, as 3 channels



  

Color Channel Images

● As the intensity goes up, the channel’s 
greyscale image becomes brighter

● We can use this for a technique called color 
blob detection

● In this example, we will find the blue cup by 
finding the bluest pixels



  

Color Channel Subtraction

● cv::subtract()
– Allows you to subtract one cv::Mat from another

– cv::Mat bMinusG;

– cv::subtract(chans[0], chans[1], bMinusG);



  

Color Subtracted Images

● Blue channel minus 
red channel

● Blue channel minus 
green channel



  

Picking out the blue pixels

● We see that Blue minus Red gives us really 
bright pixels where the blue cup is, so we’ll 
simply focus on that



  

Image Thresholding

● There are other illuminated pixels in the image, but the brightest 
ones are now the cup.
– So we will pick the pixels that are only at least as bright as some value

● This is image thresholding
– You can specify both a minimum and a maximum threshold

– cv::threshold(input_image, output_image, threshold_value, 
value_when_above_threshold, threshold_type)

– For now, we will use only cv::THRESH_BINARY
● It is or is not above the threshold

cv::Mat bThresh;
cv::threshold(bMinusR, bThresh, 50, 255, cv::THRESH_BINARY);



  



  

Contour Detection

● Looks for closed image contours in a scene
– These are the “blobs” in the image, connected 

areas in the threshold image.

– This is more obvious in the next set of images



  



  

Area in a contour

● cv::contourArea(contours[i])
– Looks for the size of a contour

– In your program, look for the biggest contour and 
track it, to get rid of noise

– In this example, it looks like this



  



  

Image Masking

● Masking is using only certain pixels
● A mask is computed as a 1-channel image
● In the example, this happens here

cv::Mat mask = cv::Mat::zeros(image.rows, image.cols, CV_8UC1);
drawContours( mask, contours, maxSizeContour, cv::Scalar(255), 
cv::LineTypes::FILLED, 8, hierarchy );

● copyTo can be used with a mask like this
image.copyTo(blueCupImg, mask);



  



  

For your homework..

● You will create your own ROS package which puts the 
blue, green, and red cups together
– This package must build under catkin_make or catkin build 

with g++

● The three separate cups get published on ROS topics
● The three cups together get published on a ROS topic 

in a composite image
● This will stream using data from three_cups.bag
● Publishing the image topics will use cv_bridge



  

ROS Workspace Creation Review

● mkdir <ros_workspace_name>
● cd <ros_workspace_name>
● mkdir src
● cd src
● catkin_init_workspace



  

ROS Package Creation Review

● We went over this before, so we’ll only hit the 
high points



  

catkin_create_pkg

● Creates a package template that you can fill in
– catkin_create_pkg <package_name> roscpp rospy 

std_msgs <other dependencies if you need them>

● In your homework, you will use
– catkin_create_pkg hw3 roscpp rospy std_msgs 

sensor_msgs cv_bridge image_transport
– Consider this a free tip on how to solve your homework

● Should be run from your workspace’s src directory



  

CMakeLists.txt

● Used to build your software
– We can pick through this file if needed

● The version created by catkin_create_pkg is only a 
template, you will need to uncomment and modify the lines 
that you need
– # add_executable(${PROJECT_NAME}_node src/hw3_node.cpp)

– # target_link_libraries(${PROJECT_NAME}_node
#   ${catkin_LIBRARIES}
# )

– Possibly others



  

package.xml

● The version made by catkin_create_pkg is 
probably actually correct. Your implementation 
may vary

● package.xml is your manifest file
– It tells ROS how to treat your package

● Name
● License
● Maintainer
● If it requires other packages in order to build or run it



  

“catkin_make” and “catkin build”

● Either is run from the top of your workspace
● Will build your software into your ROS workspace
● You will need to source devel/setup.bash to include 

your workspace into your ROS environment
● Once you have done that, you should be able to run 

your homework from rosrun hw3 <program_name>
● Remember to run roscore before any program that 

is not in a launch file, including rviz or rosbag



  

rosbag

● You will use three_cups.bag for your homework
● rosbag records of plays back pre-recorded data 

from ROS topics
● rosbag play -l three_cups.bag

– -l makes it run the bag in a loop



  

rviz – The ROS Visualizer

● rosrun rviz rviz
● What you get should look something like this.



  



  

● Clicking the add button will allow you to add 
things to visualize.



  



  

● “By topic” will list the available topics.



  



  

● Expand until you see what you are interested 
in.



  



  

● Clicking “Okay” should add it to the interface.



  



  

● You can rearrange and resize windows as 
appropriate.



  



  

● Use rviz to help develop and debug your 
homework.



  

What should my program do?

● You should write 1 (and only 1) ROS node
● It should publish 4 topics

– /color_filter/blue_cup

– /color_filter/green_cup

– /color_filter/red_cup

– /color_filter/cups

● The first three should show only the blue, green, and 
red cup, respectively.

● The third should show all three together.



  

How should my program do this?

● Finding the BLUE cup is demonstrated in the 
example on justinhart.net
– You may need to modify your package.xml and 

CMakelists.txt as per the Piazza discussion

● Finding the RED and GREEN cups is a 
variation on this



  

How should my program do this?

● /color_filter/cups contains all three, though!
● RIGHT! I’m not going to tell you exactly how to 

do this, because it would make the homework 
too easy for you to learn anything.

● But you will use cv::bitwise_or to do it
– And if you Google cv::bitwise_or, and understand 

how you found the blue,green, and red cups; the 
example for bitwise_or is almost exact directions on 
how this works.



  

So.. display the cups, right?

● NO!!
– Publish a ROS TOPIC for each of the the blue, 

green, and red cups, respectively, and one 
containing all three.

– You should be able to see this topic using rviz

– In fact, turn off the cv::imshows in your c++ code 
before you submit (unless you’ve already 
submitted).



  

How do I publish the ROS topic?

● cv_bridge
– http://wiki.ros.org/cv_bridge/Tutorials/UsingCvBridg

eToConvertBetweenROSImagesAndOpenCVImage
s

– Then publish the topic as in our previous lectures.

– See also: 
https://stackoverflow.com/questions/27080085/how-
to-convert-a-cvmat-into-a-sensor-msgs-in-ros



  

My ROS topic complains that I’ve 
advertised more than once
● Call advertise() in your main, and publish() in 

your callback.
– publish() sends the image

– advertise() says that you will publish on a topic



  

My ROS topic complains that I’ve 
advertised more than once
● Call advertise() in your main, and publish() in 

your callback.
– publish() sends the image

– advertise() says that you will publish on a topic
● And you can’t advertise the same topic more than once 

per node.
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